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For gravity coupled to a neutral, massless scalar field, Wyman suggested a method 
of solution in power series valid provided the scalar field depends only on time. 
In this work we generalize his approach to nonzero cosmological constant. 

1. I N T R O D U C T I O N  

General relativity couples gravity with all fields. In particular, general 
covariance determines the relevance of the metric of space-time in the 
equations of  the fields, and these, in view of their energy-momentum content, 
constitute the external sources of gravity. 

Bergmann and Leipnik (1957) sought solutions for the coupling of 
gravity with a neutral, massless scalar field. They assumed a static line 
element with spherical symmetry. Several authors have since dealt with 
various aspects of  the problem; see Fr~yland (1982) for some important 
references. 

Under the assumptions of Bergmann and Leipnik, Wyman (1981) 
suggested a new coordinate system which allows the integration of the field 
equations in an almost trivial manner, provided the scalar field is time 
independent. He further suggested a method for searching for a solution 
in a power series, provided the scalar field is only time dependent. However, 
all these results are based on a vanishing cosmological constant A. 

The purpose of this work is to study the coupling of a scalar neutral 
massless field with gravity allowing a nonnull value for A in Einstein's 
equations. In particular, we shall consider a class of  solutions corresponding 
to a scalar field that only depends on time. 
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The plan of this work is as follows: In Section 2 we formulate the field 
equations for the coupled system. In Section 3 we search for Schwarzschild- 
type solutions for the coupled equations. For this purpose we find a natural 
extension of the power series method for A # 0. A brief summary of the 
results is presented in Section 4. 

2. THE FIELD EQUATIONS 

The most general case of Einstein's equations is 
1 

R**~ - ~ & . v g  + A g ~  = - K  T~., (1) 

where R~,. denotes the Ricci tensor; R denotes the curvature scalar, construc- 
ted from the metric tensor g,~ and its derivatives. A must be a constant, 
called the cosmological constant. K denotes the gravitational coupling 
constant, and T~,~ denotes the energy-momentum tensor associated with 
external gravitation sources. 

Let & (the neutral massless scalar field) be the only external source of 
the gravitational field. The associated Tu, minimally coupled to gravity is 
defined as 

K T~.. = / ) (&,~th , .  - � 8 9  (2) 

Here a comma denotes the partial derivative and ~q is a positive constant. 
The equation of  motion for & (minimally coupled) is given by 

&i2 = 0  (3) 

where semicolon denotes a covariant derivative. 
The field equations (1) allow R to be expressed in terms of A and T~, 

the trace of  T~,~, which may be calculated from (2). Substituting these results 
in (1), we reduce Einstein's equations to the equivalent form 

R~, = -/)b.j,&.~ + A&.~ (4) 

Finally, we observe that all physically acceptable solutions to (3) 
correspond to an energy density Too positive in a local Lorentzian frame, 
defined by 

go0 = - g i l  = -g22 ~-" - - g 3 3  = 1 
(5) 

&.. = O, ~ # v  

3. S O L U T I O N  OF T H E  EQUATIONS 

In the static case with spherical symmetry, the Schwarzschild-type line 
element is given by 

d s  2 = e ~ d t  2 - e A d r  2 - r 2 d ~ .  2 (6) 
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where 
d E  2 = dO 2 q- sin 2 O d ~  2 (7) 

both v and A being only functions of r. Similarly, following Wyman (1981), 
we shall suppose that the field ~b depends at most on t and r. Let q~ and 
4; denote the partial derivatives of ~b with respect to t and r, resl~ectively. 
Then (b., takes the form 

~,~ = (& 6 ;  0, 0) (8) 

Due to the spherical symmetry assumed in (6), the field equations (4) 
imply that ~ and qS' are independent of the t variable. Clearly, q5 = ~b(t, r) 
may depend explicitely on t. 

Under our symmetry assumptions, the only nonnuli components of 
R , ,  are (Adler, et al., 1975, p. 464) 

/ v"  lv'a ' ~,,2 v"~ 

R~176 = -e" -a~ '2  4 I - 7 + 7 ]  

I/~ b"A' /2 '2 A '  
Rll = 

2 4 4 r 

R= 

R33 

Then, given the structure 
g . .  given in (8) and (6), 

-- e v - A (  

it tt 

2 
/ 

e-*/1-t 

(9) 
=e_X(14v'r A_~r)_ 

= R22 s in  2 0 

of R ~ ,  and considering the definitions of qS, and 
respectively, we obtain the field equations 

P" ~"A ' I/2 pp'~ 
2 4 1 - 4 + r J  = - f ~ w 2 + A e ' -  - -"  "/" (10) 

1- . . . . .  t lq~a-  A e ~ (11) 
4 4 r 

v'r 2 a-2" r ) - 1 = -Ar2 (12) 

~ b ' =  0 (13) 

On the other hand, (3) takes the form 

~rr( r 0  2 eO,-a)/2q~,) _ ~  (r 2 e(X-~)/2 &) = 0 (14) 

Equation (13) imples that qS' # 0 or ~ # 0. These cases must be dealt 
with separately. In this work we shall only consider the simplest case, ~ # 0, 
which allows an immediate integration of (14). 
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I f  ~ ~ 0, we see f rom equat ion (13) that  4~' = 0. Therefore ,  in view of  
equat ion (14), we have 

= const (15) 

In what  follows, 4; shall denote  a constant  o f  integration. 
Equat ions  (10)-(12) imply 

u ' + a ' = ~ 2 r e  ~-~ (16) 

v ' - a ' = 2 [ ( 1 - A r  2) c a -  1 ] / r  (17) 

In the par t icular  case A = 0, W y m a n  (1981) suggested a me thod  of  solut ion 
in power  series for equat ions  (16) and (17). We now proceed  to show the 
extension of  his me thod  for  the general case A # 0. The basic fact is that  
in the absence of  explicit  solutions for  g~,~ in this system of  coordinates ,  
the system (16), (17) allows the calculat ion of  the Taylor  expans ions  for  
the solutions at any point  o f  space. In part icular ,  we shall develop the 
p rocedure  at the point  r = 0. We shall s implify the calculat ions by defining 
the new variable 

x = �89 (18) 

This change of  variable reduces  (16) and (17) to 

~ ' + a ' =  e ~-~ (19) 

~ ' -  a ' =  [(1 - e x )  e ~ - 1 ] / x  (20) 

where the pr ime denotes  differentiation with respect  to x; the e pa rame te r  
has been defined as 

e = 2A/aq~ 2 (21) 

Let v(x) and A (x) be regular  at x = 0. Then  A ( 0 ) =  0. In part icular ,  we 
shall impose  v ( 0 ) = 0 .  Under  these condit ions,  equat ions (19) and (20) 
become  

v'(0) + )t '(0) = 1 (22) 

v'(0) - A'(0) = lim (1 - ex) e ~ - 1 _ a ' (0 )  - e (23) 
x ~ O  X 

Solving (22) and (23) for v'(0) and A'(0), we obtain 

v'(0) = (2 - e ) / 3  

A'(O)= ( l + e ) / 3  

(24) 

(25) 
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Differentiat ing equat ions  (19) and  (20) with respect to x, we find, in the 
l imit x -+ 0, the equat ions  for u"(0) and  A"(0). Using (24) and  (25), we obta in  

2 e - 1  
v"(0) + A"(0) - (26) 

3 

e(1 + ~ ( 1  + u"(O) - 3A"(O) - e ,  + - e ,  (27) 
3 18 

Therefore,  v"(0) and A"(0) are given by 

- 8 + 1 4 e - 5 e  2 
v"(0) (28) 

45 

- 7 + 1 6 e + 5 e  2 
A"(0) - (29) 

45 

Now we are able to express the first terms of the Taylor expans ions  for 
v ( x ) ,  A (x), e ", and  e * at x = 0. The results are 

2 - e  8 - 1 4 e + 5 e  2 
v ( x )  = - - x  x 2 +  �9 �9 �9 (30) 

3 90 

2 -  e &2f~r2 8 -  14e + 5 8 2  q) a~~4t~2r4q-"  , " 
(31) 

6 360 

1+  
a(x)= 3 

e 7 - 1 6 e - 5 e  2 
X X2"~ - '  ' " (32) 

9O 

1 q- E go~ ' / "  2 ~ r 2  7 - -  16e  - 5e 2  t#,x~24t~2r4q- �9 
(33) I 

6 360 

e ~ l + 2 - e  2 - e  = X- I -  X2-~ -" " " (34) 
3 15 

2 - e 2~,r2_1_ 2~08 = 1 +  6 ~ @ 4 ~ 2 r 4 ~ -  " " " (35) 

l + e  2 - 2 6 e - 1 0 e  2 
e A = 1 + x x 2+" �9 �9 (36) 

3 90 

1 + e q~2f~r 2 1 - 13e - 5 e  2 q ~ 4 1 O 1 2 r 4 + "  . . (37) 
= 1 +  6 180 

A new aspect of our  results is that the Taylor  coefficients calculated 
for the expans ions  (30), (32), (34), and  (36) are po lynomia l  funct ions  of 
the e parameter ,  with all its roots real and  nonul l .  
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In particular, equations (2) and (15) imply that the Too component  of 
the energy-momentum tensor is constant and given by 

KToo = I1~2/2 (38) 

Then, e, defined by (21), may be expressed as 

e = A/K Too (39) 

Then e and the Taylor coefficients in the expansions (30), (32), (34), and 
(36) remain unaltered when A and Too are rescaled by the same factor. 

Finally, we remark that our expressions for v, A, e ~, and e a include, as 
special cases, the expressions obtained by Wyman (1981) for e = 0 (A = 0). 

4. FINAL C O M M E N T S  

We have extended the method of solution as power series to the most 
general case of Einstein's equations, including the cosmological term, when 
a scalar, neutral, massless field is the only external source of gravity. The 
results we have obtained include, as a particular case, those reported 
previously for A = 0. 
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